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Abstract

We present a higher-order method to calculate the motion of a floating, shallow draft, elastic plate of arbitrary

geometry subject to linear wave forcing at a single frequency. The solution is found by coupling the boundary element

and finite element methods. We use the same nodes, basis functions, and maintain the same order in both methods. Two

equations are derived that relate the displacement of the plate and the velocity potential under the plate. The first

equation is derived from the elastic plate equation. The discrete version of this equation is very similar to the standard

finite element method elastic plate equation except that the potential of the water is included in a consistent manner.

The second equation is based on the boundary integral equation which relates the displacement of the plate and the

potential using the free-surface Green function. The discrete version of this equation, which is consistent with the order

of the basis functions, includes a Green matrix that is analogous to the mass and stiffness matrices of the classical finite

element method for an elastic plate. The two equations are solved simultaneously to give the potential and

displacement. Results are presented showing that the method agrees with previous results and its performance is

analysed.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The floating thin elastic plate of shallow draft can be used to model a range of physical systems, for example ice floes

or very large floating structures. It is also of theoretical importance as one of the simplest models of hydroelasticity. It is

not surprising therefore that the floating elastic plate has been the subject of significant research. Much of this research,

especially that which was motivated by the construction of very large floating structures, is summarized in the review

papers by Kashiwagi (2000) and Watanabe et al. (2004). The review paper by Squire et al. (1995) summarizes the

research prior to 1995 which was motivated by modelling sea ice floes, but does not include the more recent work,

Meylan and Squire (1996) and Meylan (2002), in which the solution for a three-dimensional ice floe is presented.

The linear wave forcing of a floating elastic plate requires that two equations relating the displacement of the plate

and the velocity potential of the water (or equivalently the pressure) be solved. We refer to these two equations as the

plate and water equations, respectively. There are two basic methods to solve these equations, called the modal

expansion method and the direct method, respectively. In the modal expansion method the plate motion is expanded as a

sum of modal functions. Different modal functions have been chosen, the most common being free–free beam modes

[e.g. Kashiwagi, (1998)] or the modes of a vibration of a free plate [e.g. Meylan and Squire, (1996); Meylan, (2002)]. In

the direct method, the equations are solved directly without expanding the plate motion in modes. The direct method
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was used by Meylan and Squire (1994), Ohkusu and Namba (1998) and Hermans (2000) in two-dimensions, and

Yasuzawa et al. (1996), Yago and Endo (1996), and Hamamoto et al. (1997) in three dimensions, amongst others.

The advantages of the modal expansion method are as follows: the number of unknowns to describe the plate motion

is reduced, the rigid body solution method can be used (Bishop et al., 1986) and, if the plate geometry is simple enough,

the modes may be calculated trivially, thus removing the need to solve the plate equation numerically. However, for

situations where the plate geometry is not regular and where the relative plate stiffness is small, the modal expansion

method is no longer preferable. This is because it now becomes numerically challenging to find modes to expand the

plate motion that avoid having to solve the plate equation and because the number of modes required becomes large.

The situation of low relative plate stiffness and irregular shape is particularly applicable to modelling ice floes.

It is generally agreed that the finite element method (FEM) is the best method to solve the plate equation (for

anything but the simplest plate geometries) while the boundary element method (BEM) is best suited to solve the water

equation. For this reason, Yasuzawa et al. (1996), Yago and Endo (1996), and Hamamoto et al. (1997) developed

hybrid FEM-BEM methods in which the same unknowns were used in the FEM and the BEM. However, they did not

use the same modal functions for the FEM and the BEM so that the order of the BEM was lower than that used in the

FEM. It is well recognized that there are advantages to solving the BEM equation using a higher-order method,

especially for short wavelengths. This is the reason why a higher-order method is used in Kashiwagi (1998).

In this paper, we will derive a higher-order FEM–BEM method for the floating elastic plate in which the same

unknowns (nodes) and basis functions are used in both the FEM and the BEM. This differs from the higher-order

method presented by Kashiwagi (1998) where different basis functions for the plate and water velocity potential, neither

of which were the FEM basis functions, were used. We present some results for various plate geometries and properties.

We establish that the results agree with those given in Meylan (2002) and we show that the performance of the present

method is much better than the low-order method which was used there. We also establish convergence tests for the

number of points used to integrate the boundary element equations. We then present some displacement results for four

different geometries.

2. The equations of motion

In this section, we will derive two coupled equations, one from the equation of motion for an elastic plate and the

other from the linear water wave equation, which govern the motion of a floating elastic plate of shallow draft subject to

linear wave forcing. Fig. 1 is a schematic diagram showing the coordinate system and some of the equations of motion.

The vertical coordinate, z points upwards, with the water surface at z ¼ 0 and the sea floor at z ¼ �H (or z ¼ �N for

infinitely deep water). The horizontal coordinates are x and y and we denote the pair (x; y) by the vector x: The plate
floats on the water surface with negligible draft. We will begin by considering the equations for the elastic plate.

2.1. The elastic plate equation

The plate is assumed to be thin, elastic, to float on the water surface with zero-draft, and to be of arbitrary shape. The

equation of motion for the plate is given by the elastic plate equation,

Dr4W þ rih
@2W

@t2
¼ p ð1Þ

together with the boundary conditions

@2W

@n2
þ n

@2W

@s2
¼ 0 and

@3W

@n3
þ ð2� nÞ

@3W

@s3
¼ 0 ð2Þ
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(Hildebrand, 1965) where W ðx; y; tÞ is the plate displacement, D is the rigidity constant of the plate, ri is the plate

density, h is the plate’s thickness, p is the pressure at the water surface, n is Poisson’s ratio, and n and s denote the

normal and tangential directions respectively. We assume that the pressure at the water surface is given by the linearized

Bernoulli’s equation,

p ¼ �r
@F
@t

����
z¼0

�rgW ; ð3Þ

where Fðx; y; z; tÞ is the velocity potential of the water, r is the density of the water, and g is the gravitational

acceleration constant. Note that W ðx; y; tÞ is independent of z whereas Fðx; y; z; tÞ is z-dependent. Equating (1) and (3)

gives us

Dr4W þ rih
@2W

@t2
¼ �r

@F
@t

����
z¼0

�rgW : ð4Þ

2.1.1. Nondimensionalizing the variables

We nondimensionalize the spatial variables with respect to a length parameter L (for example, L may be derived from

the area of the plate or L may be the characteristic length ðD=rgÞ1=4) and the time variables with respect to
ffiffiffiffiffiffiffiffi
L=g

p
: The

dimensionless variables are therefore given by

%x ¼
x

L
; %y ¼

y

L
; %z ¼

z

L
; %W ¼

W

L
; %t ¼ t

ffiffiffiffi
g

L

r
and %F ¼

F

L
ffiffiffiffiffiffi
Lg

p :

Using the dimensionless variables Eq. (4) becomes

br4 %W þ g
@2 %W

@%t2
¼ �

@ %F
@%t

����
z¼0

� %W; ð5Þ

where the constants b and g are given by

b ¼
D

rL4g
and g ¼

rih

rL
:

We will refer to b as the stiffness constant and g as the mass constant. This notation is based on Tayler (1986).

2.1.2. The single frequency equations

We will consider the solution for a single frequency and we can therefore represent the displacement and the potential

as the real parts of complex functions in which the time dependence is e�iot where o is the dimensionless radian

frequency, i.e.

%Wð %x; %y; %tÞ ¼ Re½wð %x; %yÞe�io%t�;

%Fð %x; %y; %z; %tÞjz¼0 ¼ Re½fð %x; %yÞe�io%t�:

Therefore Eq. (5) becomes

br4wð %x; %yÞ � o2goð %x; %yÞ ¼ iofð %x; %yÞ � wð %x; %yÞ; ð6Þ

which we will refer to as the plate equation. For reasons of clarity, in what follows we will omit the overbar from the

dimensionless variables.

2.2. Equations of motion for the water

We consider water of infinite depth or finite depth H : The velocity potential for the water is assumed to satisfy

Laplace’s equation together with the appropriate linearized boundary conditions given by

r2f ¼ 0; �Nozo0;

@f
@z

¼ 0; z ¼ �H or z ¼ �N;
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@f
@z

¼ �iow; z ¼ 0; xAD;

@f
@z

� o2f ¼ 0; z ¼ 0; xeD; ð7Þ

where D is region of the water surface which is covered by the plate. The velocity potential is also subject to the

Sommerfeld radiation condition as jxj-N;

lim
jxj-N

ffiffiffiffiffi
jxj

p @

@jxj
� io2

� �
ðf� finÞ ¼ 0 ð8Þ

(Wehausen and Laitone, 1960), where fin is the incident potential. We assume that the incident potential is a plane wave

given by

fin ¼
A

o
eikðx cos yþy sin yÞekz ð9Þ

for infinite depth and

fin ¼
A

o
eikðx cos yþy sin yÞ cosh kðz þ HÞ

cosh kH
ð10Þ

for finite depth. In Eqs. (9) and (10) A is the dimensionless amplitude, k is the wavenumber (the wavelength l ¼ 2p=k),

which is o2 in infinite depth and the positive real solution of the nondimensional dispersion equation

k tanh kH ¼ o2

in finite depth, and y is the direction of propagation of the wave. We transform the linear wave potential problem given

by Eq. (7) with boundary condition (8) to an integral equation using the free-surface Green function (Wehausen and

Laitone, 1960; Kashiwagi, 2000). The free-surface Green function, Gðx; xÞ; satisfies

r2
xG ¼ 0;

@G

@z
� o2G ¼ �dðx� xÞ; z ¼ 0;

@G

@z
¼ 0; z ¼ �H or z ¼ �N;

where x ¼ ðx; ZÞ: This gives us

fðxÞ ¼ fin þ
Z
D

Gðx; xÞðo2fðxÞ þ iowðxÞÞ dSx; ð11Þ

where the kernel of the integral operator is the free-surface Green function and we restrict fin to z ¼ 0: The free-surface
Green function can be found by taking the limit as the source and field points tend to z ¼ 0 of the three-dimensional

Green function whose Laplacian is equal to the delta function in the fluid and which satisfies the zero condition on the

free surface. The free-surface Green function is given by

Gðx; xÞ ¼ �
1

4p
2

jx� xj
� po2½H0ðo2jx� xjÞ þY0ðo2jx� xjÞ � 2ipJ0ðo2jx� xjÞ�

� �
ð12Þ

for infinite depth (Kim, 1965) and

Gðx; xÞ ¼ �
i

2

o4 � k2

ðo4 � k2ÞH � o2
cosh2ðkHÞHð1Þ

0 ðkjx� xjÞ

�
1

p

XN
m¼1

k2
m þ o4

ðk2
m þ o4ÞH � o2

cos2ðkmHÞK0ðkmjx� xjÞ ð13Þ

for finite depth (John, 1950). The values of km; m > 0; are the positive real roots of the dispersion equation

o2 þ km tan kmd ¼ 0: ð14Þ

In Eqs. (12) and (13) J0 and Y0 are Bessel functions of the first kind and second kind of order zero, respectively, K0 is a

modified Bessel function of the second kind of order zero, H
ð1Þ
0 is a Hankel Function of order zero, and H0 is the Struve

function of order zero (Abramowitz and Stegun, 1970). Note that G depends only on jx� xj; however there is a

singularity when x ¼ x:
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By expressing the integral operator in Eq. (11) as

Gf ðxÞ ¼
Z
D

Gðx; xÞ f ðxÞ dx

it can be written as

fðxÞ ¼ finðxÞ þ o2GfðxÞ þ ioGwðxÞ; ð15Þ

which we will refer to as the water equation. The plate Eq. (6) and the water Eq. (15) must be solved simultaneously.

3. Discrete versions of the plate and water equations

In this section, we will derive discrete versions of the plate Eq. (6) and the water Eq. (15). We will use the finite

element method (FEM) to solve the plate equation and the boundary element method (BEM) to solve the water

equation. The same basis functions will be used in both methods.

3.1. Expansion of the displacement and potential

We will present the details of how we expand the displacement and potential using the finite element basis functions.

The basis functions will be defined over square panels, but our method could be generalized straightforwardly to other

FEM basis functions. We discretize the plate by dividing it into a finite number of p uniform square panels of area 4a2:
We denote each panel by Dd where 1pdpp: Each panel consists of four nodes at the edges and each node has three

degrees of freedom. The three degrees of freedom are the displacement ðwÞ and its two derivatives ð@w=@x and @w=@y).

Fig. 2 shows a schematic diagram for a panel. Within the panel the local index of the nodes is 1; 2; 3; and 4 as shown.

The global index of the nodes for a particular panel Dd are q
ðdÞ
1 ; q

ðdÞ
2 ; q

ðdÞ
3 ; and q

ðdÞ
4 ; again as shown. We always number

the nodes in such a way that q
ðdÞ
2 ¼ q

ðdÞ
1 þ 1 and q

ðdÞ
4 ¼ q

ðdÞ
3 þ 1: The total number of nodes in the plate is q:

We use nonconforming square elements (Petyt, 1990) to expand the plate motion. Assuming that xADd we use the

standard FEM to approximate wðxÞ at Dd : The displacement wðxÞ is represented as a product of a vector of functions

which depend on x and a constant vector,

wðxÞ ¼ Nd ðxÞ #wd ; xADd ; ð16Þ

where Nd ðxÞ is the vector of basis functions, which we will call the basis vector. The basis vector is defined by

Nd ðxÞ ¼ ½N11 N12 N13 N21 N22 N23 N31 N32 N33 N41 N42 N43�; ð17Þ

where Nj1 ¼ Nj1ð #x; #yÞ; Nj2 ¼ Nj2ð #x; #yÞ; and Nj3 ¼ Nj3ð #x; #yÞ ð j ¼ 1; 2; 3; 4Þ are given by

Nj1ð #x; #yÞ ¼
1

8
ð1þ #xj #xÞð1þ #yj #yÞð2þ #xj #x þ #yj #y � #x2 � #y2Þ;

Nj2ð #x; #yÞ ¼
a

16
ð1þ #xj #xÞð #yj þ #yÞð #y2 � 1Þ;

Nj3ð #x; #yÞ ¼ �
a

16
ð #xj þ #xÞð #x2 � 1Þð1þ #yj #yÞ: ð18Þ
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The pair ð #x; #yÞ is ðx=a; y=aÞADd and �1p #xj ; #yjp1 where j denotes the jth node of Dd : The vector #wd is a vector of

constants, which is given by

#wd ¼ w
ðdÞ
1

@w
ðdÞ
1

@x

@w
ðdÞ
1

@y
w
ðdÞ
2

@w
ðdÞ
2

@x

@w
ðdÞ
2

@y
w
ðdÞ
3

@w
ðdÞ
3

@x

@w
ðdÞ
3

@y
w
ðdÞ
4

@w
ðdÞ
4

@x

@w
ðdÞ
4

@y

" #T
; ð19Þ

where

w
ðdÞ
j ¼ wðxjÞ;

@w
ðdÞ
j

@x
¼

@

@x
wðxjÞ;

@w
ðdÞ
j

@y
¼

@

@y
wðxjÞ

and xjADd : The basis vector Nd is of dimension 1
 12 and the constant vector #wd has dimension 12
 1:
We expand the potential in an identical manner to the displacement, i.e.,

fðxÞ ¼ Nd ðxÞ #fd ; xADd ; ð20Þ

where #fd is the vector of constants defined by the following:

#fd ¼ fðdÞ
1

@fðdÞ
1

@x

@fðdÞ
1

@y
fðdÞ
2

@fðdÞ
2

@x

@fðdÞ
2

@y
fðdÞ
3

@fðdÞ
3

@x

@fðdÞ
3

@y
fðdÞ
4

@fðdÞ
4

@x

@fðdÞ
4

@y

" #T

and

fðdÞ
j ¼ fðxjÞ;

@fðdÞ
j

@x
¼

@

@x
fðxjÞ and

@fðdÞ
j

@y
¼

@

@y
fðxjÞ:

Likewise finðxÞ can be written as

finðxÞ ¼ Nd ðxÞ #fin
d ; ð21Þ

where

#fin
d ¼ fin

1

@fin
1

@x

@fin
1

@y
fin
2

@fin
2

@x

@fin
2

@y
fin
3

@fin
3

@x

@fin
3

@y
fin
4

@fin
4

@x

@fin
4

@y

� �T
and

fin
j ¼ finðxjÞ;

@fin
j

@x
¼

@

@x
finðxjÞ;

@fin
j

@y
¼

@

@y
finðxjÞ;

xjADd and fin is given by Eq. (9).

3.2. The plate equation

We will solve the plate Eq. (6) using the representation of the potential and displacement in the finite element basis

functions. We reduce Eq. (6) defined for the entire plate to an equivalent equation that is applicable only to a panel by

considering xADd : We apply (16) and (20) to replace wðxÞ and fðxÞ in (6) to obtain

br4ðNd #wd Þ � o2gðNd #wd Þ ¼ ioðNd
#fd Þ � ðNd #wd Þ:

We transform (6) into its variational and minimize respect to #wd to obtainZ
Dd

b
@2NT

d

@x2

@2Nd

@x2
þ

@2NT
d

@y2
@2Nd

@y2
þ 2ð1� nÞ

@2NT
d

@x@y

@2Nd

@x@y
þ 2n

@2Nd

@x2

@2Nd

@y2

� � �
dxðdÞ #wd

�
Z
Dd

fo2gNT
d Ndg dx

ðdÞ #wd ¼
Z
Dd

½ioNT
dNd

#fd �NT
d Nd #wd � dx

ðdÞ ð22Þ

(Meylan, 2001). We now introduce the notation

/Nd ;NdSDd
¼ ½m�d ; ð23Þ

where the inner product is defined to be the integral over Dd ; i.e.

/Nd ;NdSDd
¼

Z
Dd

NT
d Nd dx

ðdÞ ð24Þ
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and ½m�d is called the mass matrix for the panel Dd in the standard FEM terminology and

Z
Dd

@2NT
d

@x2

@2Nd

@x2
þ
@2NT

d

@y2
@2Nd

@y2
þ 2ð1� nÞ

@2NT
d

@x@y

@2Nd

@x@y
þ 2n

@2Nd

@x2

@2Nd

@y2

� �
dxðdÞ ¼ ½k�d ; ð25Þ

where ½k�d is called the stiffness matrix for the panel Dd in the standard FEM terminology (Petyt, 1990).

By substituting the mass matrix from (23) and the stiffness matrix from (25) into (22) we obtain

b½k�d #wd � o2g½m�d #wd ¼ io½m�d #fd � ½m�d #wd ; ð26Þ

which is the discrete version of the plate Eq. (6) for a single panel.

3.3. Solution of the water equation

We will now solve the water Eq. (15) using the representation of the displacement and potential in the finite element

basis functions. Substituting (20) and (21) into (15) we obtain

Nd ðxÞ #fd ¼ Nd
#fin

d þ o2
Xp

e¼1

ðGdeNeÞ #fe þ io
Xp

e¼1

ðGdeNeÞ #we; xADd ; ð27Þ

where

GdeNe ¼
Z
De

Gðx; xÞNeðxÞ dx: ð28Þ

We apply an inner product with Nd to both sides of (27). This gives us

/Nd ;NdSDd

#fd ¼ /Nd ;NdSDd

#fin
d þ o2

Xp

e¼1

/Nd ; ðGdeNeÞSDd

#fe þ io
Xp

e¼1

/Nd ; ðGdeNeÞSDd
#we; ð29Þ

where

/Nd ; ðGdeNeÞSDd
¼

Z
Dd

NT
d GdeNe dx

ðdÞ: ð30Þ

Analogous to the definitions of the mass and stiffness matrix, we defineZ
Dd

NT
d ðGdeNeÞ dx

ðdÞ ¼ ½g�de; ð31Þ

where we call ½g�de the Green matrix. The numerical calculation of ½g�de will be discussed in the next section.

Therefore Eq. (29) for a panel Dd is given by

½m�d #fd ¼ ½m�d #f
in
d þ o2

Xp

e¼1

½g�de
#fe þ io

Xp

e¼1

½g�de #we; ð32Þ

which is the discrete version of the water Eq. (15) for a single panel.

4. Calculating the Green matrix

In this section, we will present the method used to calculate the Green matrix given by Eq. (31). The calculation of

this matrix is the principle numerical difficulty in our solution method. The calculation of ½g�de will be separated into

two cases depending on whether d ¼ e or not. This is because the free-surface Green function (12) is singular at

jx� xj ¼ 0: Since x lies in panel d and x lies in panel e the singularity only occurs when d ¼ e: We also notice from (31)

that the Green function occurs only in the integral equation GdeNe and therefore we need only separate the solution

GdeNe into the singular and the non singular cases.

ARTICLE IN PRESS
C.D. Wang, M.H. Meylan / Journal of Fluids and Structures 19 (2004) 557–572 563



The integral equation GdeNe can be solved using an elementary numerical integration method. This is done by

approximating the integral in the following way:

GdeNe ¼
Z
De

Gðx; xÞNeðxÞ dx;

¼
XM

j¼1

vjGðx; xjÞNeðxjÞ; xADd ; xjADe; ð33Þ

where xj and vj are sets of M integration points and their corresponding weights over De: The integral in Eq. (31) will be
calculated using a similar numerical scheme, with the possibility of choosing different points and weights given by

Z
Dd

NT
d ðGdeNeÞ dx

ðdÞ ¼
XN

i¼1

uiN
T
d ðxiÞðGdeNeÞ; xiADd ; ð34Þ

where xi; and ui are sets of N integration points and their corresponding weights over Dd : Combining (33) and (34) the

numerical solution for the Green matrix ½g�de is

½g�de ¼
XN

i¼1

uiN
T
d ðxiÞ

XM

j¼1

vjG
ðijÞNeðxjÞ; ð35Þ

where xiADd ; xjADe; and GðijÞ ¼ Gðxi; xjÞ:
For the case where d ¼ e we have to solve Eq. (35) using sets of distinct integration points fxig and fxjg and, hence,

distinct fuig and fvjg: This is done to avoid the singularity that occurs whenever xi coincides with xj : Also, because of
the singularity, we will use more integration points to calculate GdeNe when d ¼ e: There are other methods which can

be used to calculate the singular integral, most notably a coordinate transformation method which is described in

Hamamoto et al. (1997). We do not adopt this method here for simplicity but there is not reason why the coordinate

transformation method could not be employed with our formulation. For the case where the Green function is not

singular (i.e. dae) we employ the same set of integration points and their corresponding weights for (34 and (35)).

Therefore (35) can be written as

½g�de ¼
N1G1N2 if d ¼ e;

N1G2N
T
1 if dae;


ð36Þ

where G1 is an N 
 M rectangular matrix of the form

G1 ¼

Gð11Þ Gð12Þ ? Gð1MÞ

Gð21Þ Gð22Þ

&

GðN1Þ GðNMÞ

2
6664

3
7775 ð37Þ

and G2 is an N 
 N square matrix of the form

G2 ¼

Gð11Þ Gð12Þ ? Gð1NÞ

Gð21Þ Gð22Þ

&

GðN1Þ GðNNÞ

2
6664

3
7775: ð38Þ

The matrix N1 is a 12
 N matrix of the form

N1 ¼ ½u1N
ð1ÞT
d u2N

ð2ÞT
d ? uNN

ðNÞT
d �

and the matrix N2 is a M 
 12 of the form

N2 ¼

v1N
ð1Þ
d

v2N
ð2Þ
d

^

v3N
ðMÞ
d

2
66664

3
77775:
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5. Solution of the equations for the entire plate

We have determined the discrete versions of the plate an water equations for each panel. We must now combine these

equations so that they apply for the entire plate. Since we are using a set of uniform panels to discretize the plate, the

mass matrix (23) and the stiffness matrix (25) are calculated once only. Using a transformation matrix ½o�d we assemble
them into the global stiffness and the global mass matrices for the plate

K ¼
Xp

d¼1

½o�Td ½k�d ½o�d ; ð39Þ

M ¼
Xp

d¼1

½o�Td ½m�d ½o�d ; ð40Þ

where

½o�d ¼

?

1 0 0

0 1 0

0 0 1

zfflfflfflfflffl}|fflfflfflfflffl{3q1�2?3q1

1 0 0

0 1 0

0 0 1

zfflfflfflfflffl}|fflfflfflfflffl{3q2�2?3q2

?

?

1 0 0

0 1 0

0 0 1

zfflfflfflfflffl}|fflfflfflfflffl{3q3�2?3q3

1 0 0

0 1 0

0 0 1

zfflfflfflfflffl}|fflfflfflfflffl{3q4�2?3q4

?

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

; ð41Þ

qj is the index of the jth node of Dd and all other entries are zero. It should be noted that, in practice, the sparseness of

the matrix ½o�d should be exploited in all calculations. Each transformation matrix ½o�d has the dimension 12
 3q where

q is the total number of nodes in the plate.

We assemble the discrete plate equation for a panel (26) into the discrete plate equation for the entire plate

bK #w� o2gM #w ¼ ioM #f�M #w; ð42Þ

where the vectors #f and #w are related to #wd and #fd of Dd by

#wd ¼ ½o�d #w; ð43Þ

#fd ¼ ½o�d #f: ð44Þ

The discrete water equation for a panel is assembled into the discrete water equation for the plate by applying the

transformation matrix ½o�d (41) to (32) to obtain

M #f ¼ M #fin þ o2G #fþ ioG #w; ð45Þ

where

G ¼
Xp

d¼1

Xp

e¼1

½o�Td ½g�de½o�e ð46Þ

is the global Green matrix for the plate. Eq. (42) is solved simultaneously with (45) to obtain #w and #f:
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Having solved for the plate displacement (or the potential) in the FEM basis functions we can recover it as a function

of x using the formula

wðxÞ ¼ BðxÞ #w;
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Fig. 3. The comparison of the plate displacement (real and imaginary components) computed using the high-order method (left-hand

side) and the low-order method (right-hand side). The stiffness is b ¼ 0:01; the mass is g ¼ 0 and the wave-number is o2 ¼ p: The wave
is incident from the y ¼ p=6 direction:
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Fig. 4. Diagram of the four geometries of plate shape for which we will calculate solutions.
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where for xADd

BðxÞ ¼ y N11N12N13

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{3q
ðdÞ
1
�2 y 3q

ðdÞ
1

N21N22N23

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{3q
ðdÞ
2
�2 y 3q

ðdÞ
2

y N31N32N33

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{3q
ðdÞ
3
�2 y 3q

ðdÞ
3

N41N42N43

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{3q
ðdÞ
4
�2 y 3q

ðdÞ
4

y

2
64

3
75

and again all other entries are zero.

6. Results

We begin by making some comparisons of our results with those given using the method described in Meylan (2002)

where the FEM was used to find the modes for the plate and these modes we coupled to the water separately using a
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Fig. 5. As for Fig. 3 except for a geometry 2 plate.

Table 1

The error and time as a function of the number of panels for the higher-order method

Number of panels Error Time (s)

100 6:0633
 10�4 32.01

225 1:3738
 10�4 176.05

400 3:0189
 10�5 590.59

625 4:2498
 10�6 1617.83

900 0 3662.42
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constant panel (low-order) method. The numerical integration for Eq. (35) is carried out using the Gauss–Legendre

Quadrature with N ¼ 4 and M ¼ 4; unless d ¼ e in which case we choose M ¼ 8 so as to avoid the singularity in the

Green function. Fig. 3 shows the comparison of the plate displacement w=A using our higher-order method and

Meylan’s low-order method for wavelength l ¼ 2; b ¼ 0:01; and g ¼ 0: The direction of wave propagation is y ¼ p=6
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Table 2

The error and time as a function of the number of panels for the low-order method

Number of panels Error Time

100 1:3923
 10�2 5.80

400 1:0291
 10�3 76.36

900 3:6510
 10�4 353.39

1600 2:2060
 10�4 1904.11

2500 1:5050
 10�4 5832.23

Table 3

The errors as a function of the number of panels and the number of Gaussian integration points for the higher-order method

Number of panels Error N ; M ¼ 4 Error N; M ¼ 6 Error N ; M ¼ 8

100 6:0633
 10�4 4:3308
 10�4 3:2671
 10�4

400 3:0189
 10�5 2:1483
 10�5 1:6292
 10�5

900 2:8856
 10�8 4:3800
 10�10 0
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Fig. 6. The real part of the displacement for a geometry 1 plate using the higher-order method for water depth H as shown. The

stiffness is b ¼ 0:01 and the mass is g ¼ 0: The wavelength l ¼ 2 and the wave is incident from the y ¼ p=6 direction.
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and the water depth is infinite. The plate is square with side length 4 and area 16. This plate is geometry 1 shown in

Fig. 4. The number of panels is 100 for the high-order method and 900 for the low-order method. Fig. 5 shows the same

comparison for a triangular plate (geometry 2) also with area 16. The panel size is chosen to be equivalent to that used

in Fig. 3. Both figures show the real and the imaginary part of the plate displacement and we can see that the two

solutions agree.

We can make a more detailed comparison by comparing the error in the solutions. We compare the solutions for the

geometry 1 plate and wave properties used in Fig. 3. Since we do not know the true solution we will compare all

solutions to that obtained by the higher-order method with 900 panels. The error, E; between two solutions w1 and w2

will be given by the following expression:

E ¼
Z
D
jw1ðxÞ � w2ðxÞj2 dx:

We begin by comparing the higher-order method. Table 1 shows the convergence error for the number of

panels being 100; 225; 400; 625 and 900, respectively. The error for 900 panels is zero because this is the reference.

The results show the good performance expected of the high-order method. Table 2 is a comparison of the convergence

using the lower-order method of Meylan (2002). Comparing Tables 1 and 2 we see that the performance of the

higher-order method is much better than the lower method as expected. We have also included the time data

from the computations. While it is appropriate to compare the time data for the same method, it is not necessarily so

appropriate to do so for two different methods. This is because we cannot be certain that the implementation of both

methods is equally optimized. However, the time data shows that a significant extra cost is associated with the higher-

order method.

Next, we make a comparison of the effect of increasing the number of Gaussian points used in the calculation of the

higher-order solution. Table 3 shows the error for the number of Gaussian integration points per panel being 16 (M;
N ¼ 4), 25 (M; N ¼ 5) and 36 (M; N ¼ 6), respectively (unless d ¼ e in which case M ¼ 8). The results are for 100; 400
and 900 panels. The comparison is with the results for 36 integration points and 900 panels. These results show that very
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Fig. 7. As for Fig. 6 except for a geometry 2 plate.
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little accuracy is gained by increasing the number of Gaussian points beyond 16. For brevity, we do not show results

concerning increasing M in the case when d ¼ e and simply note that there was very little increase in the accuracy.

Fig. 6 shows the real part of the displacement for a geometry 1 plate with b ¼ 0:01; g ¼ 0 and the direction of wave

propagation is y ¼ p=6 (exactly as in Fig. 3) for infinitely deep water and water of depth H ¼ 1=64; 1=16 and 1=4: Since
the changing water depth alters the wavelength for a fixed frequency we have chosen to keep the wavelength fixed so

that the figures may be compared more meaningfully. The wavelength is l ¼ 2: Figs. 7–9 show the same situation as

Fig. 6 except that plate geometries 2; 3 and 4 (which all have area 4) are chosen.

7. Summary

We have presented a solution for the wave-induced motion of a three-dimensional floating thin elastic plate of

shallow draft. The solution involves solving two equations, the FEM equations for the plate and the BEM equations for

the velocity potential of the water. Both of these equations were solved using the same higher-order representation of

the displacement of the plate and the velocity potential of the water. From this discretization two equations were

derived relating the displacement and potential which were solved simultaneously. The equation based on the FEM

equations for the plate was similar to the standard FEM equations with a term due to the velocity potential for the

water involving the mass matrix. The equation based on the BEM involved a matrix representation of the integral

operator which is analogous to the mass and stiffness matrices used in the FEM.

Our results were compared with the known results given by Meylan (2002) and we also compared the performance of

these two methods. The present, higher-order method, was shown to perform favourably in this comparison. We also

investigated the effect of increasing the number of integration points on the convergence properties and found that good

convergence was achieved with as few as 16 integration points per panel. Finally, we presented some displacement

results for four different plate geometries.
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